读后感是我们与作者心灵的对话,能够让书中的人物和情节在我们脑海中重现,读后感是我们与文字对话的心灵交流,深刻而温暖,下面是顺风文档网小编为您分享的《数学史》的读后感6篇,感谢您的参阅。
《数学史》的读后感篇1
首先,看到这本书后,第一个感觉是这本书太厚了,肯定无聊。而第二个印象是在每一个概念后的“见数学概念小史某某页”,然后这最重要的事是这书讲了这我不曾了解的事。
从过去到现在,先是古埃及人,他们的方法对于现代太不实用了,但是他们还是聪明,知道用符号,用两个符号来表示1()和10(),这东西就是幂,在生活中肯定很少用,而且我还发现这数学呢我一直认为是想从简单到复杂,但是并不是如此,可以说是相反的。
比巴伦的数学家们特别有趣,造的题目也有趣,不实用,但是很好玩,在本书的15页,有这原题,这大概就是用一根芦苇去测量田有多大,其实就是二元一次方程,但是看完头都大了,不知到底在讲什么。
继续读着,诶!看见了老熟人——欧几里得,从小学周围的人都在谈论着他,给我讲他的旷世巨作《几何原本》,过去经常说“好,好,好,《几何原本》好。”但是我并不知道这书居然是公元前三千多年左右写的,我一直认为他是希腊人,但是他居然是埃及人,这好奇怪,据书中说有很多的希腊数学家都不是希腊人。
继续读,数学也和天文学有关,从天文学中又出现了三角学,原来三角学是从天文学出来的,在读阿拉伯数学时,看见了“杨辉”三角形,但是这书中的是“帕斯卡三角形”,其实也是“杨辉”三角形,所以后者好记些。
微积分里面看见了伽利略,但是似乎不是他的主场,所以不管他,微积分这里知道了流数和微分基本上都是我们现在所称的导数。他们的发明者分别是牛顿和莱布尼茨。牛顿这特别熟悉了,这莱布尼茨是个律师和数学家,他最可以的是他的公式几乎都是在颠簸的马车上写下。在各个学科每每留下了著作。
还有一个人让我记住了,叫做欧拉,不光名字好记,他自己也是一个喜欢记的人,据书上所说,他可以说是一个论文天才也是数学天才,因为只要他有一个好的方法,自己马上就写一篇论文,来记下自己的观念。
这便是这《这才是好读的数学史》上篇的读后感,不是特别无聊,反而还有一些有趣,整体的布局也不错,让读者一步步深入,有特别强的吸引力,可能因人而异吧,下篇就是纯数学了,所以这便是我的读后感了。
《数学史》的读后感篇2
本书上篇 数学简史共12章节,以时间顺序讲述。从3.7万年到如今,人类在不断进步,而数学也随着人类的进步而进步。在这本书中,强调了数学的抽象性与神秘性。
我们现在学习的知识都是先辈们经过漫长探索、研究、讨论总结出的。书中出现的故事和公式使人眼前一新。比如古埃及人求圆的面积时,实际上是求圆的'近似值。如今大家都知道π·r,古埃及人却是用(8/9·d)求s圆的近似值。可以发现古埃及人在这个公式里并没有使用到“π”,这样反而要方便些。
我注意到的一个故事是:21世纪开始,克莱学院决定在克莱的领导下,选择7个数学课题,并予每个课题100万美金的奖金,而那7个数学课题是关于“千禧年问题”书中并没有提到7个问题分别是什么,于是便上网查了查。分别是:戴雅猜想、霍奇猜想、纳维尔-斯托克斯方程、p与np问题、庞家莱猜想、黎曼假设、杨-米尔斯理论。这7个问题是真的难,连题目都看不懂的那种难.
有一个问题与开普勒猜想有关:如何将最大数量的球体放置在最小的空间中,我认为这和奇点有些相似,但看起来不成立的样子。但在那些数学家的眼里,这仿佛是一个十分有趣,又值得思考的问题。托马斯·黑尔斯最终证明了它。
数学是抽象的,也是无限的,他们的出现大概是我们的祖先为了方便生活而发明出来的。到如今,数学在不断的进步,但还是有许多十分困难的问题在等着我们去解答。数学不仅在生活中扮演着重要的角色,还是世界通用的语言。
《数学史》的读后感篇3
数学是一门枯燥的学科,我从小就这样认为。但是通过这个寒假,这本《这才是好读的数学史》,打开了知识文化的一扇大门,让我对数学有了更深入的了解与思考,并且领悟到了其中的魅力。
数学的历史非常悠久,从很久很久以前就已经有了数学。那时候的.人们刚刚接触到了它,而随着时代的变迁,数学的文化越来越博大精深。正是因为那些伟大的数学家们所做出的巨大贡献,才让后代的人类将数学发展得越来越好。例如一位亚历山大的希腊数学家欧几里得,他从一小部分公理中总结了欧几里德几何的原理,还写了另外五部关于球面几何、透视、数论、圆锥截面和严谨性的作品。欧几里得因此被人们称为“几何学之父”。
数学文化奇幻无穷。最让我印象深刻的便是阿拉伯数学文化。阿拉伯数学家不仅让代数成为数学的重要组成部分,而且还在几何学和三角学方面做出了重要的贡献。同时,“帕斯卡三角形”也就是“杨辉”三角也被他们所了解。阿拉伯数学文化的特点则是能够从其他数学的知识中汲取到最有用的精华,并且发展它。
数学中有很多被数学家们所发现和证明的公式、定义,我们都认为那是枯燥的、繁琐的。但是数学有自己的灵魂与存在的意义,普罗鲁克斯曾说过“数学赋予它所发现的真理以生命;它唤起心神,澄清智慧;它给我们的内心思想增添光辉;它涤尽我们有生以来的蒙昧与无知。”因为有了数学,人类的民族发展得越来越顺利;因为有了数学,人类的生活变化得多姿多彩……
数学的发展并不是我们想象中的那么顺利,而是经历了无数的困难和挫折,才成为了我们现代的数学。它的成就则是数学家们日日夜夜的研究与思考所造就的,让数学真正地显露出了它的价值。中国的数学源远流长,拥有着它自己的特色与意义。重大的数学定义、理论总是在继承与发展原有的理论的基础所建立起来的,它们不但不会改变原本的理论,而且经常将最初的理论思想包含进去。正是因为我们不断地为它注入灵魂力量,它才能越来越强大,越来越辉煌!
数学史的学习让我们更加理解数学的意义,从而在知识的海洋中不断发现、不断进取、不断研究,逐渐形成对数学的热爱!
《数学史》的读后感篇4
从小到大,在学习数学的过程中,接触大量的数学题,对数学的历史很少提及。《数学史》,一本专门研究数学的历史,娓娓道来,满足了我的好奇,把数学的发展过程展示出来。
本书于1958年出版,作者j.f.斯科特。书中主要阐述西方数学的发展历史,但也专门用一章讲述印度和中国的数学发展。沿着时间轴,数学的发展经历了从初等到高等的过程。
上古时代的古埃及人和古巴比伦人在平时的生产劳作中运用到了数学知识。
古希腊人继承这些数学知识并不断拓展,成为数学史上一个“黄金时代”,涌现出毕达哥拉斯、柏拉图、亚里士多德、欧几里得、阿基米德,丢番图等一系列耳熟能详的名字。
在黑暗的中世纪,数学发展处于停滞状态,而斐波那契的出现把数学带上复兴。
文艺复兴,数学又进入一个蓬勃发展的时期,对解三次方程和四次方程、三角学、数学符号、记数方法的研究没有停步。“+”、“-”、“=”、“”、“>”的符号是在那个时候出现的,同时出了一名数学家韦达——韦达定理的发明者。
7世纪,解析几何出现、力学兴起、小数和对数发明。这些都为微积分的发明奠定了基础。牛顿和莱布尼兹两位大师的研究,在数学领域开辟了一个新纪元。
8世纪,为完善微积分中的概念,各路数学家在数学分析方法上有所发展。欧拉、拉格朗日,柯西等大师采用极限、级数等方法让微积分更加严谨。同时,非欧几何的理论开始萌芽。
纵观全书,数学的发展是由一群人搭建起来的。前人的工作为后人的研究奠定了基础。后人在前人的工作上不断突破和创新。另外,数学中也有哲理,天地有大美而不言。当看到欧拉时,想到欧拉公式;看到韦达,想到韦达定理。公式很简洁,但把规律说清楚了。数学爱好者可以试着解里面的数学题,看看古人在当时是如何研究的,有的方法很笨拙,有的方法很巧妙。读完后,发现学习数学,会解几道数学题是不够的,还要学会去培养自己的思维。毕竟数学家的思维也会受到历史的局限。比如负数开根号,当时被人看来是无法接受,后来发明了虚数。
历史是在不断地前进,数学的发展亦然。想知道数学和历史的跨界,那就来看《数学史》。
《数学史》的读后感篇5
数学也许对我们来说仅仅是一门枯燥且乏味的科目,但在学习数学这门科目的时候,谁又曾想过数学是从何而来的,数学的发展历程又是怎么样的……
本来我并不知道这些,或者用词恰当一些,数学对于我来说是熟悉却陌生的:说熟悉,从最初的小学一年级接触数学,可以说到现在时间已经蛮久了;说陌生,从最初接触数学以来,我并不了解关于数学的发展经过以及数学的由来。
?数学史》这本书概括了数学的出现以及发展,将数学发展的几千年的历史写以书的形式,让人们更加容易理解。同时,《数学史》也在讲述发展史的`同时,将数学概念本身讲解的十分清楚。
从希腊人到哥德尔,在数学的发展中一直人才辈出。数学的发展虽追踪欧洲数学的发展,但也不失中国,印度和阿拉伯文明。《数学史》将世界上的数学文明都总结在了书中,十分经典。
在书中,我了解到:在早期人类社会中,数学史抽象的科学,恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”到现如今,数学对科学和社会提供着不可缺的技术与理论支持。
数学也是一门累积性强的学科,重大的数学理论总是在继承和发展原有理论的基础上建立起来的,他们不仅不会推翻原有理论,反而总是包容它们,在原有的基础上再做更多的钻研。
读了这本书,让我对数学有了新的认识和感悟,也让我从更深层次了解到了数学的魅力与伟大以及对前辈的深深崇敬。《数学史》这本书是一本十分难得的记录数学发展史的书,它不仅条理清晰且易读,实为优秀的数学史教材。
《数学史》的读后感篇6
最近,我读了《这才是好读的数学史》一书的上半部分。读完后我十分感慨,原来数学是一门如此有趣且有丰富内涵的学科。
这本书记载了数学从有记载的源头再向代数、几何(平面几何、立体几何、解析几何)、统计学、运筹学等领域不断深化发展的历史进程。全书按历史发展的顺序先后介绍了古希腊、古印度、古巴比伦、古代中国、中世纪欧洲在十五世纪至十六世纪数学在顺应社会实践需要的基础上出现的深化、突破。
在介绍数学发展的'基础上,这本书还以历史的视角对三十种有关基础数学的普通概念进行了独立精彩的叙述,再现了毕达哥拉斯、欧几里得、欧拉等数学大师的风采,还特地的穿插了女性数学家在数学发展中做出的巨大贡献,从各方面为读者还原了真实、有趣的数学史。
数学与文学、物理学、艺术、经济学或音乐一样,是人类不断发展和努力的结果。它既有过去的历史,又有未来的发展,更有今天的广泛应用。我们今天学习和使用的数学,在许多方面都与一千年前、五百年前甚至一百年前的数学有很大不同。在21世纪,数学无疑会进一步发展。学习数学就像认识一个人一样,你对他的过去了解的越多,你现在和将来就越能理解他并与其互动。
在任何起点上想学好数学,我们需要先理解相关问题,然后才能赋予题目有意义的答案。理解一个问题往往取决于了解这个概念的理解,所以想理解数学,就来读《这才是好读的数学史》。
会计实习心得体会最新模板相关文章:
★ 数学读后感7篇