教案是教师在教学过程中重点强调和讲解关键的知识点和概念,以提高学生的理解和掌握程度,教案的设计应该充分考虑学生的创新创意和问题解决能力,以下是顺风文档网小编精心为您推荐的因数与倍数数学教案7篇,供大家参考。
因数与倍数数学教案篇1
教学目标
1、知识与技能
掌握因数、倍数的概念,知道因数、倍数的相互依存关系。
2、过程与方法
通过自主探究,使学生学会用因数、倍数描述两个数之间的关系。
3、情感态度与价值观
使学生感悟到数学知识的内在联系的逻辑之美。
教学重难点
教学重点
掌握找一个数的因数、倍数的方法。
教学难点
能熟练地找一个数的因数和倍数。
教学工具
课件、投影
教学过程
一、迁移引入
同学们,在我们的日常生活中,人与人之间存在着许多相互依存的关系,如:佳爸是佳佳的爸爸,佳佳是佳爸的儿子。其实在我们的数学王国里,数与数回见也存在着这种相互依存的关系,请看大平米,认识这些吗?(课件出示:0,1,2,3,4,5……)
这些自然数。(课件去“0”)
去0后这又是什么数?(非零自然数中。)这节课我们就在非零自然数中来研究数与数之间的这种相互依存的关系。
板书:因数和倍数
二、情境创设,探究新知
1、理解整除的意义。
(1)出示例1,在前面学习中,我们见过下面的算式。
12÷2=6 8÷3=2……2 30÷6=5 19÷7=2……5 9÷5=1.8
26÷8=3.25 20÷10=2 21÷21=1 63÷9=7
你能把这些算式分类吗?
(2)分类所得:
第
??
类
12÷2=6 20÷10=2
30÷6=5 21÷21=1
63÷9=7
第
二
类
8÷3=2……2 9÷5=1.8
19÷7=2……5 26÷8=3.25
(3)观察发现,合作交流。
观察算式,说一说谁是谁的倍数,谁是谁的约数。
2、理解因数、倍数的意义。
12÷2=6中,我们就说12是2的倍数,2是12的因数。12÷6=2,所以12是6的倍数,6是12的因数。由此可知:(在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。)
3、总结归纳
(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
(2)因数与倍数是相互依存的关系。
4、注意:
为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。
5、做一做。
下面的4组数中,谁是谁的因数?谁是谁的倍数?
4和24 36÷13 75÷25 81÷9
6、教学例2
18的因数有哪几个?
18的因数有1、2、3、6、9、18。
也可以这样用图表示。
18的因数
1,2,3,
6,9,18
30的因数有哪些?36呢?
7、教学例3
2的倍数有哪些?
2的倍数有2、4、6、8……
2的倍数
2,4,6,
8,10,12,
14,……
3的倍数有哪些?5呢?
8、小组讨论,归纳总结
一个数的最小因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
课后小结
一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。
课后习题
1、填空。
(1)36是4的( )数。
(2)5是25的( )。
(3)2.5是0.5的( )倍。
2、下面各组数中,有因数和倍数关系的有哪些?
(1)18和3 (2)120和60 (3)45和15 (4)33和7
3、24和35的因数都有哪些?
板书
一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。
因数与倍数数学教案篇2
一、教学内容
1.因数和倍数
2.2、5、3的倍数的特征
3.质数和合数
二、教学目标
1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象能力。
三、编排特点
精简概念,减轻学生记忆负担。
四、方面的调整:
a.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。
b.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
c.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
注意体现数学的抽象性。
数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。
五、具体编排
1.因数和倍数
因数和倍数的概念
过去:用÷=表示能被整除,÷=表示能被整除。
现在:用=直接引出因数和倍数的概念。
(1)用2×6=12给出因数和倍数的概念。
(2)用3×4=12进一步巩固上述概念。
(3)让学生利用因数和倍数的概念自主发现12的其他因数。
(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。
(5)说明本单元的研究范围。
注意以下几点:
(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。
(2)因数和倍数是一对相互依存的概念,不能单独存在。
(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。
(4)注意区分“倍数”与前面学过的“倍”的联系与区别。
例1(一个数的因数的求法)
(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。
(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。
一个数的因数的特点
(1)因数是其自身,最小因数是1。
(2)因数个数有限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
例2(一个数的倍数的求法)
(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。
(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。
做一做
与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。
一个数的倍数的特点
(1)最小倍数是其自身,没有的倍数。
(2)因数个数无限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
2.2、5、3的倍数的特征
因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。
2的倍数的特征
(1)从生活情境“双号”引入。
(2)观察2的倍数的个位数,总结出2的倍数的特征。
(3)介绍奇数和偶数的概念。
(4)可让学生随意找一些数进行验证,但不要求严格的证明。
5的倍数的特征
(1)编排方式与2的倍数的特征类似。
(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。
3的倍数的特征
(1)强调自主探索,让学生经历观察――猜想――猜想――再观察――再猜想――验证的过程。
(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。
(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。
3.质数和合数
质数和合数的概念
(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。
(2)可任出一个数,让学生根据概念判断其为质数还是合数。
例1(找100以内的质数)
(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。
(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。
六、教学建议
1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。
从因数和倍数的含义去理解其他的相关概念。
2.要注意培养学生的抽象思维能力。
因数与倍数数学教案篇3
小学数学苏教版四年级下册第九单元
?因数和倍数》教学设计
教学目标:
知识与技能:结合乘(除)法运算初步认识自然数之间存在的倍数与因数关系,进一步丰富自然数的知识。
过程与方法:经历探索的过程,掌握找一个数的倍数和因数的方法;同时发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
情感与态度:结合学习内容,进一步体会数学知识之间的内在联系和数学的奇妙、有趣,提高数学思维的水平,建立学好数学的信心。
教学重点:
使学生从操作活动中理解倍数和因数的意义,掌握找一个数的倍数和因数的方法。
教学难点:
发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
教学过程:
一、动画导入,铺垫激趣
同学们喜欢看动画片吗?看老师今天带来了什么?
谁来说说大头儿子和小头爸爸,他们两人之间是什么关系呢?(父子关系)(大头儿子是小头爸爸的儿子),反过来可以怎样说?(小头爸爸是大头儿子的爸爸),那,我和你们的关系呢?可以怎样说?是啊!人与人之间存在着各种相互依存的关系,在数学中,数与数之间同样也存在着这样的关系。(揭示课题、学习目标)
二、操作实践,理解意义
?过渡】今天,小头爸爸给大头儿子出了一道题:你能用12个同样大的小正方形拼成一个长方形吗?请同学们取出小正方形,我们也来拼一拼,摆一摆。
预学问题:(1)、每排摆几个?摆了几排?
(2)用一个乘法算式把自己的摆法表示出来。
方法:小组交流后汇报板书:
4×3=126×2=1212×1=1
2小结:通过刚才的学习,我们发现,用12个同样的小正方形,可以摆出三种不同的长方形,由此,我们还得出三道不一样的乘法算式。3×4=12从数学的角度看,我们可以说,3是12的因数,4也是12的因数。倒过来还可以说,12是3的倍数,12也是4的倍数。(让学生读一读。)
模仿练习:指板书,在另外两道乘法算式中,谁是谁的因数,谁是谁的倍数你们会说吗? 反馈练习:(1)完成想想做做第1题。
(2)在18÷6=3,讨论:3是因数,6是因数,18是倍数,这句话对吗?(同桌交流) 明确:因数和倍数是相互依存的关系,不能单独说哪个数是因数,哪个数是倍数。
看来我们不仅能在乘法算式中找到一个数的倍数和因数,也能在除法算式中找到一个数的倍数和因数。为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。
三、探索方法,有序思考
(一)找一个数的倍数
?过渡】在刚才交流的过程中,我们知道12是3的倍数,18也是3的倍数。 思考:什么样的数是3的倍数? (3的倍数是3与一个数相乘的积) 谁来从小到大有序地说一说3的倍数?
说得完吗?(课件出示:3的倍数:
3、
6、
9、
12、15??) 引导思考:你能有序地找其它一些数的倍数吗? (请打开书本,完成71页上的“试一试”)
预学问题:观察
2、
3、5的倍数,你发现一个数的倍数有什么特点?可以结合表格思考一下: 课件出示表格左半部分:
板书齐读发现的结论。 巩固练习:想想做做
2(二)找一个数的因数
?过渡】我们已经会有序地找一个数的倍数,那你们能不能想办法找全12的所有因数? 方法:
(1)可独立完成,也可同桌合作。 (2)写出12的所有因数。
(3)想一想,怎样找才能保证既不重复,又不遗漏。(小组讨论) (4)根据学生回答交流。
交流时思考:(1)你是怎么找一个数的因数的?
(2)你怎样做到既不重复,又不遗漏? (3)找到什么时候结束?
用乘法找:()×()=12,怎样有序地找? 学习写法:12的因数有:1,2,3,4,6,12。 还可以用什么方法找?除法可以吗? 12÷()=()
强调:按顺序一对一对找,一直找到两个因数相差很小或相等为止。 在(1)×(12)=12中,12既是12的因数,又是12的倍数。 巩固练习:
1、接下来请你找一找36的因数,说说你是怎样找的?
2、想一想:怎样才能找全?
(注意:两个因数相同时,只写一个。)
3、试一试: 15的因数,16的因数有哪些? 15的因数有:
1、
3、
5、15。
思考:应付元数”分别是怎么算出来的呢?其实都是4的倍数,你能还能举出一些4的倍数吗?写的完么?
16的因数有:
1、
2、
4、
8、16。
4、观察探索:你发现一个数的因数有什么特点?
5、练一练。想想做做
3四、拓展提高:
1、游戏:看谁反应快。
规则:凡是学号符合以下要求的,请站起来,看谁反应快?
(1) 谁的学号是5的倍数?(2) 谁的学号是30的因数?(3)看到同学们玩得这么高兴,老师也想加入你们。
我想找1号的倍数,请学号是1的倍数的同学站起来(全体起立)
2、判断
(1)6是因数,30是倍数。() (2)36
的最小倍数和最大因数都是36。() (3)20以内3的最大倍数是18。()
五、全课总结:
这节课你有什么收获?你还想提什么问题? 测试
思考:排数都是24的因数吗?每排的人数呢?
关于“因数和倍数”,还有许多的知识等我们去学习、去研究、去探索??。
板书设计:
因数和倍数
因数和倍数是相互依存的关系,不能单独说哪个数是因数,哪个数是倍数。 倍数:从1开始乘。所得的积就是这个数的倍数
因数:按顺序一对一对找,一直找到两个因数相差很小或相等为止。 一个数既是自己最大的因数也是自己最小的倍数。
因数与倍数数学教案篇4
教学内容:
人教版小学数学五年级下册,因数与倍数的整理复习。
教学目标:
1、知识目标:归纳整理“因数和倍数”的有关概念,理解并掌握概念间的内在联系,形成认知结构。
2、技能目标:亲历数学知识的整理过程,培养学生的观察分析、比较、概括、判断等逻辑思维能力。
3、情感目标:在整理和复习的过程中,培养学生合作,交流的意识,渗透事物间互相联系,互相依存的辩证思想
教学重点:
概念间的联系和发展,运用所学的知识解决实际问题。
教学难点:
归纳和整理知识点,形成知识网络
课前活动:
1、要求学生对每个知识点的意义理解并熟练掌握。
2、把自己的整理情况写在作业本上。
本章知识点:
1、因数与倍数的意义
2、求一个数的因数和倍数的方法
3、2的倍数特征
4、奇数、偶数的概念
5、5的倍数特征
6、3的倍数特征
7、质数和合数的概念、区别
复习提纲:
教学程序:
第一步:创设情境,激趣导入
师:同学们,我们学习完因数和倍数这章知识,老师这有两个问题想考考你们,看谁的反应快,你们愿不愿意?
师:你能用因数和倍数的知识描述一下4这个数吗?
(4是自然数,合数、偶数,是8的因数,4是2的倍数)
师:你又能描述一下5吗?
(5是奇数,是10的质因数)
小结:同学们很聪明!不过,这些知识并不是孤立存在的,它们之间还有很多联系,这节课,我们就一起进一步整理复习这些内容,理顺它们之间的联系。
(板书:因数与倍数的整理复习)
第二步:发放复习提纲,布置复习任务
1、发放提纲
2、作要求
第三步:自主复习,回顾旧知识
先自己想一想,要怎么做这些题,如何回答?怎样举例?考虑之后就可以在组内交流。
第四步:合作学习、质疑问难
1、合作交流学习
2、师巡视指导
第五步:展示交流,师适时补充点拔
1、展示汇报
2、师适时点拔,补充(老师也做了相应的整理,我们一起看看板书)
第六步:知识巩固、拓展训练
技能训练题:
1、按要求填数,在1—10的自然数中,选择合适的数填入圈内。
质数 合数 偶数 奇数
既是质数又是偶数 既是合数又是奇数
2、判断
(1)12是倍数,2是因数。( )
(2)1是奇数也是质数。( )
(3)奇数都是质数,偶数都是合数。( )
(4)质数没有因数,合数有无数个因数。( )
(5)所有的偶数都是合数。( )
3、我的手机号码是:a b c d e f g h i j k ,注意每个字母代表一个数字,愿不愿意知道老师的手机号码:
a——既不是质数也不是合数( )
b——最小的奇数的3倍( )
c——5的最小倍数( )
d——比最小的质数大5( )
e——8的最大因数( )
f——3的最小倍数( )
g——最小的偶数( )
h——最小的偶数( )
i——2和5之间的'奇数( )
j——既是5的倍数又是5的因数( )
k——比最小的合数小1( )
老师的手机号码是:_________
第七步:小结
今天这节课我们复习了因数与倍数;2、5、3的倍数特征:质数和合数这几个方面的知识,如果说有哪些地方弄不清楚,那么你们刚才破译出了老师的手机号码,下来可以拨打我的号码,老师随叫随到,可以帮助你,谢谢同学们的合作。
板书:
因数与倍数
a×b=c(a≠0,b≠0),
数的意义 a和b就是c的因数,
c就是a和b的倍数
因数与倍数
1、一个数的因数的个数是有限的,
求一个数的因 一个数的倍数的个数是无限的。
数和倍数的方法
2、求一个数的因数,要一对一对地找,看哪两个自然数的积等于这个数,那两个数就是这个数的因数。
1、2的倍数特征:个位上是0、2、 4、6、8的数都是2的倍数。
2的倍数特征
2、奇、偶数:自然数中,是2的倍数的数叫偶数,不是2的倍数的数叫做奇数。
5的倍数特征:个位上是0或5的数都是5的倍数
3的倍数特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数
2、5、3的倍数特征:个位上是0,各个数位上的数 的和是3倍数,这样的数就是2、5、3的倍数
1、质数:一个数只有1和它本身的个因数,这个数叫质数。
质数和合数
2、合数:一个数除了1和它本身以外,还有别的因数,这个数叫合数。
3、1既不是质数,也不是合数
因数与倍数数学教案篇5
教学目标:
从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重点:理解因数和倍数的含义。
教学过程:
一、创设情境,引入新课
师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……?
生:父子(父母、母子、母女)关系。
师:我和你们的关系是……?
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
二、认识因数与倍数
师:我们已经认识了哪几类数?
生:自然数,小数,分数。
师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。
根据学生的汇报板书:
1×12=12 2×6=12 3×4=12
12×1=12 6×2=12 4×3=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
师:在这3组乘、除法算式中,都有什么共同点?
生:第①组每个式子都有1、12这两个数。
生:第②组每个式子都有2、6、12这三个数。
生:第③组每个式子都有3、4、12这三个数。
师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本p12。
师:2和6与12的关系还可以怎样说呢?
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。
生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。
生:可以说12是12的因数吗?
生:我认为可以,12×1=12,1和12都是12的因数。
师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。
师出示:11÷2=5……1。问:11是2的倍数吗?为什么?
生:我认为不是,因为11除以2有余数。
师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?
生:2×4=8,2和4是8的因数,8是2和4的倍数。
生:40÷2=20,40是2和20的倍数,2和20是40的因数。
师出示:0×30×10
0÷30÷10
通过刚才的计算,你有什么发现?
生:我发现0和任何数相乘,都等于0。
生:0除以任何数都等于0。
生:我补充,0不能作为除数。
师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。
师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?
生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?
师:这个问题提得好!谁能回答他的问题?
生:我觉得好像不一样,但不知道为什么?
生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。
师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!
三、课堂练习
下面每一组数中,谁是谁的倍数,谁是谁的因数。
16和2 4和24 72和8 20和5
下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
师:第(3)题有两种不同的意见,请反对意见的同学说说理由。
生:因为没有说明18是谁的倍数,所以不对。
师:你认为怎样说才正确呢?
生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。
师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。
在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。
游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。
①( )是4的倍数
( )是60的因数
( )是5的倍数
( )是36的因数
②请一名学生模仿刚才老师的要求,继续练习。
③想一想,应该提什么要求,让全班同学都能举手?
生:( )是1的倍数。
师:哗,全班都举手了,谁能总结刚才的说法。
生:任何不包括0的自然数都是1的倍数。
因数与倍数数学教案篇6
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
能熟练地找一个数的因数和倍数。
教学过程:
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)
齐读p12的注意。
二、新授:
(一)找因数:
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有:1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如
18的因数
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完?
你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报3的倍数有:3,6,9,12
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……倍)
5的倍数有:5,10,15,20,……
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示
2的倍数3的倍数5的倍数
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
四、独立作业:
完成练习二1~4题
因数与倍数数学教案篇7
教学内容:
?义务教育课程标准实验教科书数学(五年级下册)》第12~13页。
教学目标:
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重点:理解因数和倍数的含义。
教学过程:
一、创设情境,引入新课
师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是?
生:父子(父母、母子、母女)关系。
师:我和你们的关系是?
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
二、认识因数与倍数
师:我们已经认识了哪几类数?
生:自然数,小数,分数。
师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。
根据学生的汇报板书:
师:在这3组乘、除法算式中,都有什么共同点?
生:第①组每个式子都有1、12这两个数。
生:第②组每个式子都有2、6、12这三个数。
生:第③组每个式子都有3、4、12这三个数。
师:(指着第②组)像这样的乘、除法式子中的.三个数之间的关系还有一种说法,你们想知道吗?请看课本p12。
师:2和6与12的关系还可以怎样说呢?
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。
生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。
生:可以说12是12的因数吗?
生:我认为可以,121=12,1和12都是12的因数。
师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。
师出示:112=51。问:11是2的倍数吗?为什么?
生:我认为不是,因为11除以2有余数。
师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?
生:24=8,2和4是8的因数,8是2和4的倍数。
生:402=20,40是2和20的倍数,2和20是40的因数。
师出示:03 010
03 010
通过刚才的计算,你有什么发现?
生:我发现0和任何数相乘,都等于0。
生:0除以任何数都等于0。
生:我补充,0不能作为除数。
师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。
师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?
生:我有一个疑问,在26=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?
师:这个问题提得好!谁能回答他的问题?
生:我觉得好像不一样,但不知道为什么?
生:我认为不一样,在26=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。
师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的因数,两者可不能搞混哦!
三、课堂练习
1.下面每一组数中,谁是谁的倍数,谁是谁的因数。
16和2 4和24 72和8 20和5
2.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在134=31中,13是4的倍数。
(3)因为36=18,所以18是倍数,3和6是因数。
师:第(3)题有两种不同的意见,请反对意见的同学说说理由。
生:因为没有说明18是谁的倍数,所以不对。
师:你认为怎样说才正确呢?
生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。
师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。
3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。
4.游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。
①
( )是4的倍数
( )是60的因数
( )是5的倍数
( )是36的因数
②请一名学生模仿刚才老师的要求,继续练习。
③想一想,应该提什么要求,让全班同学都能举手?
生:( )是1的倍数。
师:哗,全班都举手了,谁能总结刚才的说法。
生:任何不包括0的自然数都是1的倍数。
会计实习心得体会最新模板相关文章: