每个人在写教案的时候,都要注意过渡好每个教学环节,制定教案是教师开展教学工作之前的重要准备工作,下面是顺风文档网小编为您分享的四年级数学教案下册人教版教案6篇,感谢您的参阅。
四年级数学教案下册人教版教案篇1
教学目标:
1.巩固用一位数除的口算、估算的方法,提高计算能力,会用除法估算和
口算解决生活中的简单实际问题。
2能根据倍的意义,解决有关倍数关系的实际问题。
3.在解决问题的过程中获得成功的体验,树立学好数学的自信心。
教学重点:
巩固用一位数除的口算、估算方法。
教学难点:
正确合理地进行除法估算;正确解决有关倍数关系的实际问题。
教学过程:
一、谈话引入
前两节课我们分别学习了除数是一位数除法的口算和估算,这节课我们专门来进行有关练习,来进一步巩固除法口算和估算的方法,另外还要用口算或估算
的办法解决实际问题,看谁最有收获。
二、组织练习
1.专项练习
(1)口算
第一组:
30÷3400÷29000÷3
60÷2800÷45000÷5
学生先口算,再从各列中任选一个算式说说口算方法。
第二组:
16÷2=30÷5=21÷7=
160÷2=300÷5=210÷7=
1600÷2=3000÷5=2100÷7=
第三组
6÷2=8÷4=9÷3=
72÷9=36÷6=32÷8=
先口算,再观察每列中三道算式,说说有什么发现;比一比第一、第二列,说说有什么变化,为什么?
(2)估算
第一组:
71÷8181÷2359÷6
440÷9138÷7323÷4
先独立估算,有困难的可以找老师帮忙,或把难题直接写到黑板上。集体交流,如果出现不同的方法,只要合理都予以肯定。
第二组:用你喜欢的方法估一估。
125÷2297÷4378÷5435÷7469÷8194÷6
学生练习后交流。
2.解决问题
(1)教科书第17页第4题。
学生读题后问:本题你准备用什么方法解决,可以用哪种计算?(口算、估算)
指名板演,集体校对。
(2)教科书第18页第6题。
学生独立填写空格后,交流各自的想法。
小结:有关倍数关系的问题中,求一倍数的要用除法去计算。
(3)第18页第7题。
有几种解决问题的方法?
你会计算56÷4和64÷4吗?我们后面将学习他们。
(4)挑战题:a第18页第8题。
b找规律填数
481632()
24381279()
25112347(),
824123618()
三、课堂小结
今天你又有什么收获?你现在是怎样看待除法口算、除法估算的?
四、作业布置
完成《课堂作业本》第9页。
四年级数学教案下册人教版教案篇2
教学内容:
义务教育课程标准实验教科书青岛版小学数学二年级下册第四单元信息窗??
教学过程:
?第二课时】
一、回顾旧知。
谈话:昨天我们学习了口算两位数加减两位数的方法,你还记得怎样做吗,让我们来看这些题,争做“快乐速算小蜜蜂”。
1、出示题目
23+15= 48+32= 30+57=
19+43= 36+27= 27+33=
64+29= 75+16= 76—23=
98—74= 60—18= 51—26=
95—27= 84—57= 49—16=
2、回顾方法
以第一组为例,请两名同学分别说一说口算的方法。
3、全班汇报
以做题速度和准确率为准,评选出“快乐速算小蜜蜂”
[设计意图]通过简单的练习,帮助学生回顾前面所学知识,主要是让学生再次巩固口算两位数加减两位数的方法。
二、解决问题。
谈话:今天,我们再来做一只勤劳的小蜜蜂,用昨天学过的方法解决生活中的实际问题。
1、热心帮助小蜜蜂
(1)出示题目:p41(2)
(2)讲解做法:要想解决问题你是怎么想的?怎么估计的?又是怎么计算的?
(3)独立完成,全班汇报
2、问题高手小蜜蜂
(1)出示题目:p41(4)
(2)讲解做法:你能提出什么问题?你是怎样解决的?
(3)小组合作完成:小组成员轮流出题,大家同做。
(4)全班汇报:根据每个小组提出问题数量的多少,评选出“问题高手小蜜蜂”
3、实践体验小蜜蜂
(1)出示题目:p42(6)
(2)解决问题一:学生独立解决,交流想法。
(3)实践体验:找几组同学实际做,教师记录每组的数据,其他学生根据数据独立解决问题,交流想法。
[设计意图]通过设计一系列由浅入深,由课本到生活的有层次、有梯度的练习,让学生进一步巩固知识,掌握方法,提高计算的速度和准确率。老师与学生共同完成,在完成的过程中给予一定的指导和帮助。
三、总结感悟。
谈话:这部分知识学完了,你觉得它对你有什么帮助呢?
[设计意图]帮助学生梳理所学知识,理清方法,在实际运用中充分感受到数学与实际生活的联系,提高学习数学的兴趣。
四年级数学教案下册人教版教案篇3
设计说明
1.关注学生已有的生活经验。
?数学课程标准》强调关注学生已有的生活经验,把已有的经验和要学习的知识紧密结合。因此,本设计在学习新知之前鼓励学生说一说:关于年、月、日的知识,你已经知道了哪些?一是投石问路,可以较好地了解学生的认知起点;二是能充分挖掘学生身上的资源;三是创设一个关于年、月、日的知识情境,在不经意间为引发学生的疑惑作铺垫。
2.创设情境,联系生活,激发兴趣。
本设计创造性地使用教材,以学习生活中的数学、用数学知识解决生活中的简单问题为基本理念,从新课的引入到课后的练习,都将数学与生活紧密联系在一起,体现“小课堂、大社会”,让学生体会数学与生活的联系,激发学生学习数学的兴趣。
3.注重观察,引导发现,培养能力。
本设计通过年历卡及相关统计表,让学生在观察和发现中掌握年、月、日及大月、小月等知识,这样既激发了学生的参与兴趣,又让学生感受到自己是一个发现者、探究者,使学生在自我探究、自我发现中获取新知,成为学习的主人。
课前准备
教师准备 ppt课件
学生准备 20xx年、20xx年的年历
教学过程
⊙创设情境,引入新课
1.关于年、月、日的知识,你已经知道了哪些?
预设
生1:一年有12个月。
生2:有的年份有365天,有的年份有366天。
2.说一说记忆中美好的或有特殊意义的日子。(生自由汇报)
3.观察教材76页主题图,说一说年历上标注了哪些特别的日子。在这些特别的日子里,都用到了哪些时间单位?(年、月、日)这就是今天我们要学习的内容。(板书课题:年、月、日)
设计意图:选择学生感兴趣、熟悉的素材作为引子,以特别的日子为切入点,引导学生用数学的眼光观察,让学生充分感受到学习内容就在身边,使学生全身心地投入到数学活动中去。感受数学学习的价值,有效地激发学生的求知欲,拓展学生的思维。同时建立新旧知识的联系,加深对时间单位的理解,为下面的新知教学作铺垫。
⊙亲自实践,探究新知
1.教学例1。
观察20xx年、20xx年的年历。(课件出示)
思考:
(1)一年有多少个月?
(2)一年中哪几个月份有31天?哪几个月份有30天?
(3)2月有多少天?
2.师根据学生的回答板书。
(1)一年有12个月。
(2)一年中1月、3月、5月、7月、8月、10月、12月有31天,4月、6月、9月、11月有30天。
(3)20xx年的2月有28天,20xx年的2月有29天。
3.小结:我们把有31天的月份称为大月;有30天的月份称为小月;2月是一个特殊的月份,它的天数和其他的月份都不相同,所以2月既不是大月,也不是小月。
设计意图:通过认真观察20xx年和20xx年的年历,让学生自主发现并总结大月、小月的天数及2月的特殊性,提高学生的观察能力和归纳能力。
4.记忆大月和小月的方法。
(1)拳头记忆法。(课件演示)
①伸出左手,手背面向自己,握住拳头。从右边第一个凸起处开始数起,第一个凸起处是一月,凹下的地方是二月,接着以此类推数到七月,转回来,从数一月的地方接着数八月,一直数到十二月。凸起的地方就为大月,有31天;凹下的地方,除了2月,其他都是小月,有30天。
②请大家边看边实践。
(课件重复演示,学生实践)
(2)歌诀记忆法。
一、三、五、七、八、十、腊,三十一天永不差。
说明:腊,这里指腊月,一般指农历十二月,在这里代表公历十二月。
设计意图:利用多媒体教学,更加符合学生的思维水平。用歌诀帮助记忆,让课堂教学的形式“活”起来。
5.知识拓展:一年中,为什么有7个大月,4个小月?
师:每年大月有7个,小月有4个,这其中有一段有趣的历史小故事。(播放录音:大月、小月的由来)
(学生恍然大悟,原来这都是人为规定的)
设计意图:大月、小月的特殊安排使学生心中有一个大大的“?”。回溯历史,既解疑释惑,又丰富和拓宽了学生的视野,使数学学习渗透着浓浓的数学文化。以英文august(八月)与国王的名字(奥古斯都)印证八月的演变,令学生折服
四年级数学教案下册人教版教案篇4
一、学习目标
(一)学习内容
?义务教育教科书数学》(人教版)六年级下册第五单元第68~69页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。
(二)核心能力
经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。
(三)学习目标
1.理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。
2.通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。
(四)学习重点
了解简单的鸽巢问题,理解“总有”和“至少”的含义。
(五)学习难点
运用“鸽巢原理”解决相关的实际问题或解释相关的现象。
(六)配套资源
实施资源:《鸽巢原理》名师教学课件
二、学习设计
(一)课堂设计
1.谈话导入
师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。
师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。
2.问题探究
(1)呈现问题,引出探究
出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。
师:“总有”是什么意思?“至少”有2支是什么意思?
学生自由发言。
预设:一定有
不少于两只,可能是2支,也可能是多于2支。
就是不能少于2支。
(2)体验探究,建立模型
师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现?
小组活动:学生思考,摆放。
①枚举法
师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。
预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。
师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗?
(不一定,也可能放在其它笔筒里。)
师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放?
预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。
师:这种放法可以记作(3,1,0)
师:这3支铅笔一定要放在第一个笔筒里吗?
(不一定)
师:但是不管怎么放——总有一个笔筒里放进3支铅笔。
预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。
师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记?
预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。
预设4:还可以(2,1,1)
或者(1,1,2)、(1,2,1)
师:还有其它的放法吗?
(没有了)
师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有)
师:这几种放法如果用一句话概括可以怎样说?
(装得最多的笔筒里至少装2支。)
师:装得最多的那个笔筒一定是第一个笔筒吗?
(不一定,哪个笔筒都有可能。)
?设计意图:在理解题目要求的基础上,通过操作活动,用画图和数的分解来表示上述问题的结果,更直观。再通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。】
②假设法
师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放?
预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。
师:“平均放”是什么意思?
预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。
师:为什么要先平均分?
学生自由发言。
引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。
师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。
师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。
?设计意图:让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。】
(3)提升思维,建立模型
①加深感悟
师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。
预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。
师:把7支笔放进6个笔筒里呢?还用摆吗?
学生自由发言。
师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢?
师:你发现了什么?
预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。
师:你的发现和他一样吗?
学生自由发言。
师:你们太了不起了!
师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况?
练一练:
师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?”
师:说说你的想法。
师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。【板书课题】
介绍狄利克雷:
师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。
②建立模型
出示例2:一位同学学完了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗?
学生独立思考、讨论后汇报:
师:怎样用算式表示我们的想法呢?生答,板书如下。
7÷3=2本……1本(2+1=3)
师:如果有10本书会怎么样能?会用算式表示吗?写下来。
出示:
把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
10÷3=3本……1本(3+1=4)
师:观察板书你有什么发现?
预设:我发现“总有一个抽屉里至少有2本”,只要用“商+1”就可以得到。
师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。
学生讨论,汇报:
8÷3=2……22+1=3
8÷3=2……22+2=4
师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。
师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关?
预设:我认为根“商”有关,只要用“商+1”就可以得到。
师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商+1”就可以了。
引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足【a÷n=b……c(c≠0)】,那么不管怎样放,总有一个抽屉里至少放(b+1)本书。这就是抽屉原理的一般形式。
鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。
?设计意图:借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路,经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。考查目标1、2】
3.巩固练习
(1)学习了“鸽巢原理”,我们再回到课前的“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。
(2)第69页的做一做第1、2题。
4.全课总结
师:通过这节的学习,你有什么收获?
小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。
(三)课时作业
1.一个小组共有13名同学,其中至少有几名同学同一个月出生?
答案:2名。
解析:把1—12月看作是12个抽屉,13÷12=1…11+1=2【考查目标1、2】
2.希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。
答案:8名。
解析:从6岁到12岁一共有7个年龄段,即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用7+1=8(名)【考查目标1、2】
第二课时鸽巢原理
中原区汝河新区小学师芳
一、学习目标
(一)学习内容
?义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。
(二)核心能力
在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。
(三)学习目标
1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。
2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。
(四)学习重点
引导学生把具体问题转化为“抽屉原理”。
(五)学习难点
找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。
(六)配套资源
实施资源:《鸽巢原理》名师教学课件
二、学习设计
(一)课堂设计
1.情境导入
师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。
师:神奇吧!你们想不想表演一个呢?
师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?
在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理)
2.探究新知
(1)学习例3
①猜想
出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?
预设:2个、3个、5个…
②验证
师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。
可以用表格进行整理,课件出示空白表格:
学生独立思考填表,小组交流。
全班汇报。
汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。
课件汇总,思考:从这里你能发现什么?
教师:通过验证,说说你们得出什么结论。
小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。
③小结
师:为什么球的个数一定要比抽屉数多?而且是多1呢?
预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。
师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。
板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。
(2)引导学生把具体问题转化成“抽屉原理”。
师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?
思考:①摸球问题与“抽屉原理”有怎样的联系?
②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?
学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。
从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。
结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。
3.巩固练习
(1)完成教材第70页“做一做”第1题。
(2)完成教材第70页“做一做”第2题。
4.课堂总结
师:这节课你学到了什么知识?谈谈你的收获和体验。
(三)课时作业
1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?
答案:5只。
解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】
2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?
答案:16条。
解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】
四年级数学教案下册人教版教案篇5
教材分析
本单元学生主要学习一些简单的统计图表知识,初步体验数据的收集、整理、描述和分析的过程,学会用简单的方法收集和整理数据,掌握统计数据的记录方法,并能根据统计图表的数据提出并回答简单的问题,使学生了解统计的意义和作用,初步了解统计的基本思想方法,认识统计的作用和意义,逐步形成统计观念,进而养成尊重事实、用数据说话的态度。
学情分析
上学期学生已经学习了比较、分类,能正确地进行计数,所以填写统计表时不会感到太困难,其关键在于引导学生学会收集信息,整理数据,根据统计表解决问题。学生在生活中积累了较多的生活经验,能利用统计图表中的数据作出简单的分析,能和同伴交流自己的想法,体会统计的作用。本单元教材选择了与学生生活密切联系的生活场景,激发了学生的学习兴趣。如,学生的校服、讲故事比赛、春游的人数情况统计等,同时渗透一些生活基本常识,使学生明确统计的知识是为生活服务的。教学内容更加注重对统计数据的初步分析。在教学时,教师要注意让学生经历统计活动的全过程,要鼓励学生参与到活动之中,在活动中不断培养动手实践能力和独立思考能力,并加强与同伴的合作与交流。
教学目标
知识技能:使学生经历数据的收集、整理、描述和分析的过程,能利用统计表的数据提出问题并回答问题。
数学思考:了解统计的意义,学会用简单的方法收集和整理数据。
问题解决:能根据统计图表中的数据提出并回答简单的问题,并能够进行简单的分析。
情感态度:通过对周围现实生活中有关事例的调查,激发学生的学习兴趣,培养学生的合作意识和创新精神。
教学重点:使学生初步认识简单的统计过程,能根据统计表中的数据提出问题、回答问题,同时能够进行简单的分析。
教学难点:使学生亲历统计的过程,在统计中发展数学思考,提高学生解决问题的能力。
1 数据收集整理
第1课时 数据收集整理(一)
教学目标:
1、体验数据收集、整理、描述和分析的过程,了解统计的意义。
2、能根据统计表中的数据提出并回答简单的问题,同时能够进行简单的分析。根据统计表的数据提出有价值的数学问题及解决策略。
教学重点:
使学生初步认识简单的统计过程,能根据统计表中的数据提出问题、回答问题,同时能够进行简单的分析。
教学难点:
引导学生通过合作讨论找到切实可行的解决统计问题的方法。
教法:
谈话、指导相结合法,引导学生通过对情境问题的探讨,师生互动,在具体的生活情境中让学生亲身经历发现问题、提出问题、解决问题的过程。
教学过程:
一、情境引入
教师引导提问:同学们,你们入学都要穿上我们学校的校服,你们喜欢我们校服的颜色吗?(指名3~5个学生说一说)。
师:有的同学喜欢这个颜色,有的同学不喜欢,如果我们学校要给一年级的新生订做校服,有下面4种颜色,请你们当参谋,给服装厂建议下该选哪种颜色合适。
(指名学生回答,并说明理由。)
教师引导:张三喜欢红色,学校就决定将校服做成红色的,怎么样?你有什么意见?
教师小结:你们刚才说的只是根据自己的喜好来决定你想穿的校服的颜色,不能代表学校大多数同学想穿的,那如何知道哪种颜色是大多数同学喜欢的呢?(学生可能回答,调查全校学生喜欢的颜色。)
教师追问:如果我们现在要马上把信息反馈给服装厂,你觉得调查全校的学生这个方法怎么样?(学生自由发言。)
教师小结:全校学生那么多,要调查全校的学生,范围太广了,我们可以先在班级里调查,通过班级中的数据作为代表,找出大多数同学喜欢的颜色,也能代表全校大多数学生喜欢的颜色。那这节课就以我们班级为单位,在班级中进行调查统计,看看在这四种颜色中,大多数同学最喜欢哪种颜色。
二、互动新授
1、讨论收集数据的方法。
(1)教师提问:刚才我们确定了要在班级里进行调查,我们班级的人数也不少,应该怎样调查呢?你有什么好的办法?(指名学生回答。)
学生讨论收集数据的方法。
(2)出示统计表
颜色
红色
黄色
蓝色
白色
人数
可以用什么方法来完成这张统计表呢?
(3)学生说出各种不同的方法。(学生可能回答:把自己喜欢的颜色写在纸张上、举手、小调查等。每人报喜欢的颜色,我们在自己的表中做记号,如画“正”;举手表示自己在哪一个范围的,老师数一下,再把结果填在表中……)
(4)教师提问:你认为以上各种方法中,哪一种方法最方便?
师:在这些方法里,举手表示是比较简便的方法,现在由老师发布指令,每人只能选一种颜色,最喜欢哪种颜色就举手表示。
“用举手数一数”的方法,师生合作完成统计表。
师生活动,教师说颜色,学生举手,教师数人数,学生填表格。
2、从这张统计表中,我们可以知道些什么?(让学生自由发言,说出自己的发现。)
(1)师:从统计表中你能看出全班共有多少人?怎样计算?(把每种颜色喜欢的人数加起来,如果与全班人数不相符,说明我们在统计的过程中出现了错误。)
(2)师:喜欢说明颜色的人数最多,那么这个班订做校服,选择该种颜色,那全校选这种颜色做校服合适吗?为什么?
组织学生分析表格,教师根据分析的情况加以引导,突出统计的意义。
四年级数学教案下册人教版教案篇6
教学内容:
教材第67页练习十六第5~8题。
教学目标:
通过练习使学生熟练掌握两位数乘两位数的进位笔算乘法的计算方法,并能运用所掌握的知识正确地进行计算。
教学过程:
一、口算
23×30 40×30 60×700 32×40
80×70 90×42 65×100 700×2
60×72 48×20 37×20 87×30
二、计算
完成教科书第76页练习十六的第5题。
让学生用竖式的方法独立完成,然后教师讲评,讲讲时要提醒学生哪一位上满几十要想前一位进几。
三、解决问题
完成教科书第67页练习十六的第7、8题。
让学生独立分析,解决问题,讲评时要学生说出解题思路和计算的过程。
提醒:第8题,求的是56套明信片共卖多少钱?和每套明信片有12张,有没有联系?要让学生分析出每套12张是一个多余的条件。
四、游戏活动
完成教科书第67页练习第6题。
根据班级具体情况,可多增加一些题目,有几道算式的结果要相同,争取让每一位学生都拿到一道算是二。算式的结果与蜜蜂身上的数相同的就可认为蜜蜂停在这朵花上。
五、课堂小结
教学反思:
会计实习心得体会最新模板相关文章: